Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 795, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129780

RESUMO

BACKGROUND: GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS: A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS: Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.


Assuntos
Esterases , Lipase , Esterases/genética , Esterases/metabolismo , Lipase/genética , Lipase/metabolismo , Gossypium/metabolismo , Genoma de Planta , Duplicação Gênica , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Plant Physiol ; 280: 153887, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36543064

RESUMO

Ascorbate oxidase (AO) and skewed5 (SKU5)-similar (SKS) proteins belong to the multicopper oxidase (MCO) family and play important roles in plants in response to environmental stress via modulation of oxidoreduction homeostasis. Currently, reports on the response of Gossypium barbadense MCO to Verticillium wilt (VW) caused by Verticillium dahliae are still limited. Herein, RNA sequencing of two G. barbadense cultivars of VW-resistant XH21 and VW-susceptible XH7 under V. dahliae treatment, combined with physiological and genetic analysis, was performed to analyze the function and mechanism of multicopper oxidases GbAO and GbSKS involved in V. dahliae resistance. The identified differentially expressed genes are mainly involved in the regulation of oxidoreduction reaction, and extracellular components and signaling. Interestingly, ascorbate oxidase family members were discovered as the most significantly upregulated genes after V. dahliae treatment, including GbAO3A/D, GbSKS3A/D, and GbSKS16A/D. H2O2 and Asc contents, especially reductive Asc in both XH21 and XH7, were shown to be increased. Silenced expression of respective GbAO3A/D, GbSKS3A/D, and GbSKS16A/D in virus-induced gene silencing (VIGS) cotton plants significantly decreased the resistance to V. dahliae, coupled with the reduced contents of pectin and lignin. Our results indicate that AO might be involved in cotton VW resistance via the regulation of cell wall components.


Assuntos
Ascomicetos , Gossypium , Gossypium/genética , Gossypium/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Ascorbato Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Ascomicetos/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 13: 877146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665163

RESUMO

In previous research on the resistance of cotton to Verticillium wilt (VW), Gossypium hirsutum and G. barbadense were usually used as the susceptible and resistant cotton species, despite their different genetic backgrounds. Herein, we present data independent acquisition (DIA)-based comparative proteomic analysis of two G. barbadense cultivars differing in VW tolerance, susceptible XH7 and resistant XH21. A total of 4,118 proteins were identified, and 885 of them were differentially abundant proteins (DAPs). Eight co-expressed modules were identified through weighted gene co-expression network analysis. GO enrichment analysis of the module that significantly correlated with V. dahliae infection time revealed that oxidoreductase and peroxidase were the most significantly enriched GO terms. The last-step rate-limiting enzyme for ascorbate acid (AsA) biosynthesis was further uncovered in the significantly enriched GO terms of the 184 XH21-specific DAPs. Additionally, the expression of ascorbate peroxidase (APX) members showed quick accumulation after inoculation. Compared to XH7, XH21 contained consistently higher AsA contents and rapidly increased levels of APX expression, suggesting their potential importance for the resistance to V. dahliae. Silencing GbAPX1/12 in both XH7 and XH 21 resulted in a dramatic reduction in VW resistance. Our data indicate that APX-mediated oxidoreductive metabolism is important for VW resistance in cotton.

4.
Mol Genet Genomics ; 297(2): 333-343, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35187583

RESUMO

The aerial parts of Glycyrrhiza uralensis supply substantial raw material for the extraction of active pharmaceutical ingredients comprehensively utilized in many industries. Our previous study indicated that salt stress increased the content of active ingredients. However, the regulatory mechanism remains unclear. In this study, RNA-sequencing (RNA-seq) of the aerial parts of G. uralensis treated with 150 mM NaCl for 0, 2, 6, and 12 h was performed to identify the key genes and metabolic pathways regulating pharmacological active component accumulation. The main active component detection showed that liquiritin was the major ingredient and exhibited more than a ten-fold significant increase in the 6 h NaCl treatment. Temporal expression analysis of the obtained 4245 differentially expressed genes (DEGs) obtained by RNA-seq revealed two screened profiles that included the significant up-regulated DEGs (UDEGs) at different treatment points. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these UDEGs identified phenylpropanoid metabolism and flavonoid biosynthesis as the most significantly enriched pathways in 2 h treated materials. Interestingly, the carotenoid biosynthesis pathway that is related to ABA synthesis was also discovered, and the ABA content was significantly promoted after 6 h NaCl treatment. Following ABA stimulation, the content of liquiritin demonstrated a significant and immediate increase after 2 h treatment, with the corresponding consistent expression of genes involved in the pathways of ABA signal transduction and flavonoid biosynthesis, but not in the pathway of glycyrrhizic acid biosynthesis. Our study concludes that salt stress might promote liquiritin accumulation through the ABA-mediated signaling pathway, and provides effective reference for genetic improvement and comprehensive utilization of G. uralensis.


Assuntos
Glycyrrhiza uralensis , Flavanonas , Glucosídeos , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/metabolismo , Preparações Farmacêuticas/metabolismo , Componentes Aéreos da Planta , Estresse Salino , Transdução de Sinais/genética , Transcriptoma/genética
5.
Genes Genomics ; 44(7): 757-771, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226330

RESUMO

BACKGROUND: Mitogen-activated protein kinases (MPKs) play important role in response to environmental stress as crucial signal receptors or sensors. Our previous study indicated that salt stress acts as a positive factor to stimulate the production of pharmacodynamic metabolites in the medicinal plant Glycyrrhiza uralensis. Currently, little is known about the MPK gene family and their functions in the medicinal plant G. uralensis. OBJECTIVE: Identification, comprehensive bioinformatic analysis, expression profiling, and response pattern under salt stress of the G. uralensis GuMPK gene family. METHODS: Genome-wide investigation and expression profiling of the MPK gene family in G. uralensis, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, promoter cis-acting element, and expression pattern under salt stress in two different salt-tolerant Glycyrrhiza species were performed. RESULTS: A total of 20 G. uralensis GuMPK genes were identified and categorized into five groups, and had conserved gene structure and motif distribution. Expression profiling of GuMPK genes suggested their potentially diverse functions in plant growth and in response to phytohormones and environmental stress, particularly GuMPK1, 2, 5, and 10 as key components for G. uralensis in response to abiotic stress. Further expression analysis under NaCl treatment in two different salt-tolerant Glycyrrhiza species displayed the MPKs' different response patterns, emphasizing the role of MPK2, 5, 7, and 16 as potentially crucial genes for Glycyrrhiza to respond to salt stress. CONCLUSION: Our results provide a genome-wide identification and expression profiling of MPK gene family in G. uralensis, and establish the foundation for screening key responsive genes and understanding the potential function and regulatory mechanism of GuMPKs in salt responsiveness.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Plantas Medicinais , Glycyrrhiza/química , Glycyrrhiza/genética , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Filogenia , Extratos Vegetais
6.
Sci Rep ; 11(1): 21711, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741052

RESUMO

The desert pioneer plant Stipagrostis pennata plays an important role in sand fixation, wind prevention, and desert ecosystem recovery. An absence of reference genes greatly limits investigations into the regulatory mechanism by which S. pennata adapts to adverse desert environments at the molecular and genetic levels. In this study, eight candidate reference genes were identified from rhizosheath development transcriptome data from S. pennata, and their expression stability in the rhizosheaths at different development stages, in a variety of plant tissues, and under drought stress was evaluated using four procedures, including geNorm, NormFinder, BestKeeper, and RefFinder. The results showed that GAPDH and elF were the most stable reference genes under drought stress and in rhizosheath development, and ARP6 and ALDH were relatively stable in all plant tissues. In addition, elF was the most suitable reference gene for all treatments. Analysis of the consistency between the reverse transcription-quantitative PCR (RT-qPCR) and RNA sequencing data showed that the identified elF and GAPDH reference genes were stable during rhizosheath development. These results provide reliable reference genes for assuring the accuracy of RT-qPCR and offer a foundation for further investigations into the genetic responses of S. pennata to abiotic stress.


Assuntos
Poaceae/genética , Poaceae/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
7.
PLoS One ; 16(2): e0246801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561168

RESUMO

Chilling stress generates significant inhibition of normal growth and development of cotton plants and lead to severe reduction of fiber quality and yield. Currently, little is known for the molecular mechanism of brown-fiber cotton (BFC) to respond to chilling stress. Herein, RNA-sequencing (RNA-seq)-based comparative analysis of leaves under 4°C treatment in two different-tolerant BFC cultivars, chilling-sensitive (CS) XC20 and chilling-tolerant (CT) Z1612, was performed to investigate the response mechanism. A total of 72650 unigenes were identified with eight commonly used databases. Venn diagram analysis identified 1194 differentially expressed genes (DEGs) with significant up-regulation in all comparison groups. Furthermore, enrichment analyses of COG and KEGG, as well as qRT-PCR validation, indicated that 279 genes were discovered as up-regulated DEGs (UDEGs) with constant significant increased expression in CT cultivar Z1612 groups at the dimensions of both each comparison group and treatment time, locating in the enriched pathways of signal transduction, protein and carbohydrate metabolism, and cell component. Moreover, the comprehensive analyses of gene expression, physiological index and intracellular metabolite detections, and ascorbate antioxidative metabolism measurement validated the functional contributions of these identified candidate genes and pathways to chilling stress. Together, this study for the first time report the candidate key genes and metabolic pathways responding to chilling stress in BFC, and provide the effective reference for understanding the regulatory mechanism of low temperature adaptation in cotton.


Assuntos
Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Transcriptoma/fisiologia , Gossypium/genética , Folhas de Planta/genética , Proteínas de Plantas/genética
8.
Plants (Basel) ; 10(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503886

RESUMO

Monodehydroasorbate reductase (MDHAR) (EC1.6.5.4), a key enzyme in ascorbate-glutathione recycling, plays important roles in cell growth, plant development and physiological response to environmental stress via control of ascorbic acid (AsA)-mediated reduction/oxidation (redox) regulation. Until now, information regarding MDHAR function and regulatory mechanism in Gossypium have been limited. Herein, a genome-wide identification and comprehensive bioinformatic analysis of 36 MDHAR family genes in four Gossypium species, Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, were performed, indicating their close evolutionary relationship. Expression analysis of GhMDHARs in different cotton tissues and under abiotic stress and phytohormone treatment revealed diverse expression features. Fiber-specific expression analysis showed that GhMDHAR1A/D, 3A/D and 4A/D were preferentially expressed in fiber fast elongating stages to reach peak values in 15-DPA fibers, with corresponding coincident observances of MDHAR enzyme activity, AsA content and ascorbic acid/dehydroascorbic acid (AsA/DHA) ratio. Meanwhile, there was a close positive correlation between the increase of AsA content and AsA/DHA ratio catalyzed by MDHAR and fiber elongation development in different fiber-length cotton cultivars, suggesting the potential important function of MDHAR for fiber growth. Following H2O2 stimulation, GhMDHAR demonstrated immediate responses at the levels of mRNA, enzyme, the product of AsA and corresponding AsA/DHA value, and antioxidative activity. These results for the first time provide a comprehensive systemic analysis of the MDHAR gene family in plants and the four cotton species and demonstrate the contribution of MDHAR to fiber elongation development by controlling AsA-recycling-mediated cellular redox homeostasis.

9.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817730

RESUMO

Ascorbate oxidase (AO) plays important roles in plant growth and development. Previously, we reported a cotton AO gene that acts as a positive factor in cell growth. Investigations on Gossypium hirsutum AO (GhAO) family genes and their multiple functions are limited. The present study identified eight GhAO family genes and performed bioinformatic analyses. Expression analyses of the tissue specificity and developmental feature of GhAOs displayed their diverse expression patterns. Interestingly, GhAO1A demonstrated the most rapid significant increase in expression after 1 h of light recovery from the dark. Additionally, the transgenic ao1-1/GhAO1A Arabidopsis lines overexpressing GhAO1A in the Arabidopsis ao1-1 late-flowering mutant displayed a recovery to the normal phenotype of wild-type plants. Moreover, compared to the ao1-1 mutant, the ao1-1/GhAO1A transgenic Arabidopsis presented delayed leaf senescence that was induced by the dark, indicating increased sensitivity to hydrogen peroxide (H2O2) under normal conditions that might be caused by a reduction in ascorbic acid (AsA) and ascorbic acid/dehydroascorbate (AsA/DHA) ratio. The results suggested that GhAOs are functionally diverse in plant development and play a critical role in light responsiveness. Our study serves as a foundation for understanding the AO gene family in cotton and elucidating the regulatory mechanism of GhAO1A in delaying dark-induced leaf senescence.


Assuntos
Ascorbato Oxidase/genética , Escuridão , Gossypium/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Ascorbato Oxidase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Gossypium/efeitos dos fármacos , Gossypium/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos da radiação
10.
Cells ; 8(9)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31492030

RESUMO

L-Ascorbate (Asc) plays important roles in cell growth and plant development, and its de novo biosynthesis was catalyzed by the first rate-limiting enzyme VTC1. However, the function and regulatory mechanism of VTC1 involved in cell development is obscure in Gossypium hirsutum. Herein, the Asc content and AsA/DHA ratio were accumulated and closely linked with fiber development. The GhVTC1 encoded a typical VTC1 protein with functional conserved domains and expressed preferentially during fiber fast elongation stages. Functional complementary analysis of GhVTC1 in the loss-of-function Arabidopsis vtc1-1 mutants indicated that GhVTC1 is genetically functional to rescue the defects of mutants to normal or wild type (WT). The significant shortened primary root in vtc1-1 mutants was promoted to the regular length of WT by the ectopic expression of GhVTC1 in the mutants. Additionally, GhVTC1 expression was induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the GhVTC1 promoter showed high activity and included two ethylene-responsive elements (ERE). Moreover, the 5'-truncted promoters containing the ERE exhibited increased activity by ACC treatment. Our results firstly report the cotton GhVTC1 function in promoting cell elongation at the cellular level, and serve as a foundation for further understanding the regulatory mechanism of Asc-mediated cell growth via the ethylene signaling pathway.


Assuntos
Ácido Ascórbico/biossíntese , Fibra de Algodão , Etilenos/metabolismo , Gossypium/genética , Nucleotidiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos Cíclicos/metabolismo , Gossypium/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Elementos de Resposta
11.
Molecules ; 24(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086079

RESUMO

As calcium signal sensors, calcium-dependent protein kinases (CPKs) play vital roles in stimulating the production of secondary metabolites to participate in plant development and response to environmental stress. However, investigations of the Glycyrrhiza uralensis CPK family genes and their multiple functions are rarely reported. In this study, a total of 23 GuCPK genes in G. uralensis were identified, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, and promoter cis-acting elements were analyzed. Ten GuCPKs showed root-specific preferential expressions, and GuCPKs indicated different expression patterns under treatments of CaCl2 and NaCl. In addition, under 2.5 mM of CaCl2 and 30 mM of NaCl treatments, the diverse, induced expression of GuCPKs and significant accumulations of glycyrrhizic acid and flavonoids suggested the possible important function of GuCPKs in regulating the production of glycyrrhizic acid and flavonoids. Our results provide a genome-wide characterization of CPK family genes in G. uralensis, and serve as a foundation for understanding the potential function and regulatory mechanism of GuCPKs in promoting the biosynthesis of glycyrrhizic acid and flavonoids under salt stress.


Assuntos
Flavonoides/metabolismo , Glycyrrhiza uralensis/efeitos dos fármacos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrízico/metabolismo , Proteínas Quinases/metabolismo , Cloreto de Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycyrrhiza uralensis/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Estresse Salino , Cloreto de Sódio/farmacologia
12.
Int J Mol Sci ; 20(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862084

RESUMO

Myo-inositol-1-phosphate synthase (MIPS, EC 5.5.1.4) plays important roles in plant growth and development, stress responses, and cellular signal transduction. MIPS genes were found preferably expressed during fiber cell initiation and early fast elongation in upland cotton (Gossypium hirsutum), however, current understanding of the function and regulatory mechanism of MIPS genes to involve in cotton fiber cell growth is limited. Here, by genome-wide analysis, we identified four GhMIPS genes anchoring onto four chromosomes in G. hirsutum and analyzed their phylogenetic relationship, evolutionary dynamics, gene structure and motif distribution, which indicates that MIPS genes are highly conserved from prokaryotes to green plants, with further exon-intron structure analysis showing more diverse in Brassicales plants. Of the four GhMIPS members, based on the significant accumulated expression of GhMIPS1D at the early stage of fiber fast elongating development, thereby, the GhMIPS1D was selected to investigate the function of participating in plant development and cell growth, with ectopic expression in the loss-of-function Arabidopsis mips1 mutants. The results showed that GhMIPS1D is a functional gene to fully compensate the abnormal phenotypes of the deformed cotyledon, dwarfed plants, increased inflorescence branches, and reduced primary root lengths in Arabidopsis mips1 mutants. Furthermore, shortened root cells were recovered and normal root cells were significantly promoted by ectopic expression of GhMIPS1D in Arabidopsis mips1 mutant and wild-type plants respectively. These results serve as a foundation for understanding the MIPS family genes in cotton, and suggest that GhMIPS1D may function as a positive regulator for plant cell elongation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Genes de Plantas , Gossypium/genética , Mio-Inositol-1-Fosfato Sintase/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Expressão Ectópica do Gene , Éxons , Regulação da Expressão Gênica de Plantas , Íntrons , Mutação com Perda de Função , Família Multigênica , Mio-Inositol-1-Fosfato Sintase/química , Mio-Inositol-1-Fosfato Sintase/metabolismo , Fenótipo , Filogenia
13.
Proc Math Phys Eng Sci ; 474(2213): 20170553, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29887743

RESUMO

We consider vortex dynamics in the context of Bose-Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross-Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

14.
Artigo em Inglês | MEDLINE | ID: mdl-25615075

RESUMO

For a random walk on a confined one-dimensional domain, we consider mean first-passage times (MFPT) in the presence of a mobile trap. The question we address is whether a mobile trap can improve capture times over a stationary trap. We consider two scenarios: a randomly moving trap and an oscillating trap. In both cases, we find that a stationary trap actually performs better (in terms of reducing expected capture time) than a very slowly moving trap; however, a trap moving sufficiently fast performs better than a stationary trap. We explicitly compute the thresholds that separate the two regimes. In addition, we find a surprising relation between the oscillating trap problem and a moving-sink problem that describes reduced dynamics of a single spike in a certain regime of the Gray-Scott model. Namely, the above-mentioned threshold corresponds precisely to a Hopf bifurcation that induces oscillatory motion in the location of the spike. We use this correspondence to prove the uniqueness of the Hopf bifurcation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...